Extending Evolutionary Programming Methods to the Learning of Dynamic Bayesian Networks
نویسنده
چکیده
Recent work has shown that for finding static Bayesian network structures, an Evolutionary Programming (EP) approach that exploits the description length of single links is better suited than a standard Genetic Algorithm (GA). We extend this work to find good dynamic Bayesian network structures that can have large time lags. We do this through the use of a new representation of dynamic Bayesian networks for EPs and a new operator, swap, designed specifically with a dynamic Bayesian network in mind. In this paper Lam’s knowledge guided operator for static networks is compared with the new swap operator when both are used in conjunction with the new representation. Experiments are carried out on synthetic datasets and a real world oil refinery process time series. The results indicate that the new operator is better suited to finding good structures in a shorter amount of time.
منابع مشابه
Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملSpatial Operators for Evolving Dynamic Bayesian Networks from Spatio-temporal Data
Learning Bayesian networks from data has been studied extensively in the evolutionary algorithm communities [Larranaga96, Wong99]. We have previously explored extending some of these search methods to temporal Bayesian networks [Tucker01]. A characteristic of many datasets from medical to geographical data is the spatial arrangement of variables. In this paper we investigate a set of operators ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999